Vantage Math 100/V1C,V1F Exercises

: L’Hopital’s Rule

1. Use induction to show that for all n > 1,

2. Evaluate the following limits.
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3. (Hard) Evaluate the following limits.
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Note: These will not be tested.



Solution.

1. Let’s check the base case, when n = 1. In this case, we have a limit of the form 22, so
by L’Hopital’s rule,
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Thus the result is true for n = 1. Now let’s suppose there is a £ > 1 such that

Now since Z— is of the form 2= as x goes to infinity, by L’Hopital’s rule,
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Thus by induction, we have for all n > 1,
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2. (a) k;% is of the form 2 as x goes to infinity, so by L’Hopital’s rule,
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The last line is true since p > 0.

(b) Our limit is of the form § as x goes to 0.
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Our new limit is again of the form g, so let’s use L’Hopital’s Rule again,
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Where in the last line we used the fact that
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(c) We begin by simplifying.
1 1 r—1—logx
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Which is of the form % as x goes to 1, so let’s use L’Hopital.
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Which is of the form %, so let’s use L’Hopital’s rule again.
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(a) Again let L = lim,_o+ 2%, which is of the form 0° so we need to do some work.
Let’s begin by taking logarithms of both sides,

z—0t

log L =log ( lim x‘”)

= lim logz®
z—07F

= lim zlogx
z—07F

log x

= lim .
r—0t =
X

The second line is true by the continuity of log. So now we have a limit of the
form =%, so we can apply L'Hopital’s rule.
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So we have log L = 0 and thus L =1, i.e.,
lim 2% = 1.
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(b) Let L = lim, ,o(1 + 1/x)*, which is of the form 1. Again let’s take log of both
sides, and the continuity of logarithm gives us,
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Now we have a limit of the form %, so by L’Hopitals rule, we have
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SologL =1, and so L =e, i.e.,
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(c) Again let L = lim,_,o(1 +sin(2x))°t4*) which is of the form 1°. Again as in (a),
(b), let’s take logarithms.
log L = lir% cot(5z) log(1 + sin(2x))
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Which is now of the form 8. So by L’Hopital’s rule,
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Thus log L = % and therefore L = e%, ie.,
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